Home / R / 103.1.6 R Lists

103.1.6 R Lists

R list is a collection of Homogenous / heterogonous R components i.e., a dataset, a string, an image, an object can be put together. Imagine R objects which should have an image, a dataset, string etc., then the list will be very useful. Let us see a demo

 x<- c(1:20)    //Integer
 y<-FALSE      //Logical
 z<-"Mike"      //String
 k<-30
 l<-attitude
 Disc<-"This is a list of all my R elements"

Lets look at the datatype of each of these objects

    > str(x)
      int [1:20] 1 2 3 4 5 6 7 8 9 10 ...
    > str(y)
      logi FALSE
    > str(z)
      chr "Mike"
    > str(k)
      num 30

> str(l)
‘data.frame’: 30 obs. of 7 variables:
$ rating : num 43 63 71 61 81 43 58 71 72 67 …
$ complaints: num 51 64 70 63 78 55 67 75 82 61 …
$ privileges: num 30 51 68 45 56 49 42 50 72 45 …
$ learning : num 39 54 69 47 66 44 56 55 67 47 …
$ raises : num 61 63 76 54 71 54 66 70 71 62 …
$ critical : num 92 73 86 84 83 49 68 66 83 80 …
$ advance : num 45 47 48 35 47 34 35 41 31 41 …

We can create a list using list() funcion

> mylist<-list(Disc,x,y,z,k,l)
> mylist
[[1]]
[1] "This is a list of all my R elements"

[[2]]
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

[[3]]
[1] FALSE

[[4]]
[1] "Mike"

[[5]]
[1] 30

[[6]]
 rating complaints privileges learning raises critical advance
1 43 51 30 39 61 92 45
2 63 64 51 54 63 73 47
3 71 70 68 69 76 86 48
4 61 63 45 47 54 84 35
5 81 78 56 66 71 83 47
6 43 55 49 44 54 49 34
7 58 67 42 56 66 68 35
8 71 75 50 55 70 66 41
9 72 82 72 67 71 83 31
10 67 61 45 47 62 80 41
11 64 53 53 58 58 67 34
12 67 60 47 39 59 74 41
13 69 62 57 42 55 63 25
14 68 83 83 45 59 77 35
15 77 77 54 72 79 77 46
16 81 90 50 72 60 54 36
17 74 85 64 69 79 79 63
18 65 60 65 75 55 80 60
19 65 70 46 57 75 85 46
20 50 58 68 54 64 78 52
21 50 40 33 34 43 64 33
22 64 61 52 62 66 80 41
23 53 66 52 50 63 80 37
24 40 37 42 58 50 57 49
25 63 54 42 48 66 75 33
26 66 77 66 63 88 76 72
27 78 75 58 74 80 78 49
28 48 57 44 45 51 83 38
29 85 85 71 71 77 74 55
30 82 82 39 59 64 78 39

Accessing a list

> mylist[1]
[[1]]
[1] "This is a list of all my R elements"

> mylist[2]
[[1]]
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

> mylist[[2]][1]
[1] 1
> mylist[6]
[[1]]
 rating complaints privileges learning raises critical advance
1 43 51 30 39 61 92 45
2 63 64 51 54 63 73 47
3 71 70 68 69 76 86 48
4 61 63 45 47 54 84 35
5 81 78 56 66 71 83 47
6 43 55 49 44 54 49 34
7 58 67 42 56 66 68 35
8 71 75 50 55 70 66 41
9 72 82 72 67 71 83 31
10 67 61 45 47 62 80 41
11 64 53 53 58 58 67 34
12 67 60 47 39 59 74 41
13 69 62 57 42 55 63 25
14 68 83 83 45 59 77 35
15 77 77 54 72 79 77 46
16 81 90 50 72 60 54 36
17 74 85 64 69 79 79 63
18 65 60 65 75 55 80 60
19 65 70 46 57 75 85 46
20 50 58 68 54 64 78 52
21 50 40 33 34 43 64 33
22 64 61 52 62 66 80 41
23 53 66 52 50 63 80 37
24 40 37 42 58 50 57 49
25 63 54 42 48 66 75 33
26 66 77 66 63 88 76 72
27 78 75 58 74 80 78 49
28 48 57 44 45 51 83 38
29 85 85 71 71 77 74 55
30 82 82 39 59 64 78 39

The sixth element of our list is dataframe.

mylist[[6]][1]#Note the double braces [[]] in this command

 ##    rating
 ## 1      43
 ## 2      63
 ## 3      71
 ## 4      61
 ## 5      81
 ## 6      43
 ## 7      58
 ## 8      71
 ## 9      72
 ## 10     67
 ## 11     64
 ## 12     67
 ## 13     69
 ## 14     68
 ## 15     77
 ## 16     81
 ## 17     74
 ## 18     65
 ## 19     65
 ## 20     50
 ## 21     50
 ## 22     64
 ## 23     53
 ## 24     40
 ## 25     63
 ## 26     66
 ## 27     78
 ## 28     48
 ## 29     85
 ## 30     82
> mylist[[6]][[1]][1]
 ## [1] 43

There is a difference between List and Data frames. We can’t create a data frame with heterogeneous components, but a list can take all heterogeneous R objects and stores them as new List.

Other Datatypes

There are other data types like factors and Matrices. These data types work well with a specific set of problems.

  Factor

The factor is a categorical variable. There is already ‘string’ for a non-numeric variable, but Factor is a bit more like if we have categories “East, West, North, South”, rather than storing these as strings we can use them as Factor and do categorical data analysis. Factor is a good feature in statistics where categorical data should be handled very carefully.

Matrix

Matrix is a multi-dimensional array. It has its own advantages while computing specific class of problems.

Demo

> gender<-c("Male","Female")
> str(gender)
  chr [1:2] "Male" "Female"
> gender1<-factor(gender)
> str(gender1)
  Factor w/ 2 levels "Female","Male": 2 1

This is the end to the session datatypes in R.

About admin

Check Also

203.5.6 Neural Network Intuition

Before going further into neural network algorithm, we need to understand and break down how …

Leave a Reply

Your email address will not be published. Required fields are marked *