Home / Predictive Modeling & Machine Learning / 203.3.2 The Decision Tree Approach

203.3.2 The Decision Tree Approach

The Decision Tree Approach

  • The aim is to divide the whole population or the data set into segments
  • The segmentation need to be useful for business decision making.
  • If one class is really dominating in a segments
  • Then it will be easy for us to classify the unknown items
  • Then its very easy for applying business strategy
  • For example:
  • It takes no great skill to say that the customers have 50% chance to buy and 50% chance to not buy.
  • A good splitting criterion segments the customers with 90% -10% buying probability, say Gender=“Female” customers have 5% buying probability and 95% not buying

Example Sales Segmentation Based on Age

Example Sales Segmentation Based on Gender

Main Questions

  • Ok we are looking for pure segments
  • Dataset has many attributes
  • Which is the right attribute for pure segmentation?
  • Can we start with any attribute?
  • Which attribute to start from? – The best separating attribute
  • Customer Age can impact the sales, gender can impact sales , customer place and demographics can impact the sales. How to identify the best attribute and the split?

About admin

Check Also

204.5.1 Neural Networks : A Recap of Logistic Regression

Welcome to this Blog series on Neural Networks. In the series 204.5 we will go …

Leave a Reply

Your email address will not be published. Required fields are marked *